Matplotlib-For-Lab-of-Physics

本文最后更新于:1 年前

之前写的绘制最小二乘法代码太垃了,现在使用面向对象的技术对截距为 \(0\) 和不为 \(0\) 封装为两个类,并共同继承拥有一个父类 \(\mbox{regression}\) 在命令行执行时输入相应参数,对应两种不同拟合方式,以后有时间可以增加多项式拟合相关的类。

源码以及对应详尽注释如下:(绘制拟合直线和计算相应误差并输出为 \(\LaTeX\) 格式 )

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import argparse
from math import sqrt,log,pi
import numpy as np
from IPython import embed
import matplotlib.pyplot as plt
from TINV import TINV
# 存储xy坐标名称

xNames = ["谐频次数$\mathcal{n}$(个)", "弦长倒数$\ \mathcal{L}^{-1}(\mathcal{m}$$^{-1}$)",
"拉力对数$\ln\mathcal{T}}$", "线密度对数$\ \lnρ$", "振动次数 n", "振幅平方$A^2(rad^2$)"]

yNames = ["共振频率$\mathcal{f}\ \mathcal{(Hz)}$", "共振频率$\mathcal{f}\ \mathcal{(Hz)}$",
"基频对数$\ln\mathcal{f}}$", "基频对数$\ln\mathcal{f}}$", "振幅($\mathrm{rad}$)的对数 $\mathrm{ln}\ θ$", "周期$T(s)$"]

# 当前选择的名称,默认为列表最后一个
xName = xNames[-1]
yName = yNames[-1]

# 传入截距是否为0的参数
def getInput():

parser = argparse.ArgumentParser(description = 'Version: v1.0. Draw the regression line for the Physics Report,'
'coefficient 0 means the intercept is 0, '
'1 means the intercept is not 1, '
'01 means the intercept is 0 and save the figure, '
'11 means the intercept is not 0 and save the figure.'
'\nFor example, python LinearRegression.py 0')
parser.add_argument('crossOrigin', help = 'Whether the intercept of the line is 0 or 1. '
'Besides, if want to save the figure, just add 1. ')
args = parser.parse_args()
return args.crossOrigin

# 截距为0和不为0的父类
class regression:

# 初始化相关数据
def __init__(self, x, y):
self.x = x
self.y = y
self.length = len(x)
self.k = 0.0
self.b = 0.0
self.R_2 = 0.0
self.Sk = 0.0
self.Uk = 0.0
self.Sb = 0.0
self.Ub = 0.0

# 将计算结果表达为latex格式
def expression(self):
lineExpression = "$\hat{y}=" + str(round(self.k, 6)) + "x"
R2Expression = '$r^2=' + str(self.R_2) + "$"
if self.b == 0.0:
b = ""
elif self.b > 0:
b = "+" + str(round(self.b, 6))
else:
b = str(round(self.b, 6))
lineExpression += (b + "$")
return lineExpression, R2Expression

# 绘制直线以及离散点
def drawLineAndPoints(self):
xdraw = np.linspace(min(self.x), max(self.x), 50)
ydraw = self.k * xdraw + self.b
plt.plot(xdraw, ydraw, '-' , color = 'b', linewidth = 0.5)
plt.plot(self.x, self.y, 'ro')

# 将拟合直线表达式和相关系数自动标定在合适位置
def addTwoExpressions(self):
addLimx = (max(self.x) - min(self.x)) / 10
addLimy = (max(self.y) - min(self.y)) / 10
plt.xlim(min(self.x) - addLimx, max(self.x) + addLimx)
plt.ylim(min(self.y) - addLimy, max(self.y) + addLimy)

deltaY = max(self.y ) - min(self.y) + 2 * addLimy
deltaX = max(self.x) - min(self.x) + 2 * addLimx
middleX = (max(self.x) + min(self.x)) / 2
middleY = (max(self.y) + min(self.y)) / 2

if self.k < 0:
lineY1 = middleY + deltaY * 0.24
lineY2 = middleY + deltaY * 0.16
lineX1 = middleX - deltaX * 0.088
lineX2 = middleX - deltaX * 0.088
else:
lineY1 = middleY - deltaY * 0.16
lineY2 = middleY - deltaY * 0.24
lineX1 = middleX - deltaX * 0.088
lineX2 = middleX - deltaX * 0.088

lineExpression, R2Expression = self.expression()
plt.text(lineX1, lineY1, lineExpression, fontsize = 12)
plt.text(lineX2, lineY2, R2Expression, fontsize = 12)

# 添加xy轴标签
def addLabels(self):
plt.rcParams['font.sans-serif'] = 'Kaiti' # 文字使用楷体
plt.xlabel(xName, fontsize = 12)
plt.ylabel(yName, fontsize = 12)

# 绘制图形
def drawGraph(self):
plt.rcParams['axes.unicode_minus'] = False # 正常显示负数
plt.rcParams['font.sans-serif'] ='Times New Roman' # 数字使用罗马字体
self.drawLineAndPoints()
self.addTwoExpressions()
self.addLabels()
self.addLabels()

# 输出数据
def dataOutput(self):
print("\quad \quad \quad 线性拟合斜率$k=", round(self.k, 10), end = "$")
print("\quad \quad 调用Excel中TINV函数", "$t_{0.95,", str(self.length - 1) + "}=", round(float(TINV[self.length - 1]), 10), "$\par")
print("\quad \quad \quad 斜率标准偏差$s_k=", round(self.Sk, 10), end = "$")
print("\quad \quad 斜率不确定度为$U_k=", round(self.Uk, 10), "$\par")

if(self.Sb != 0.0):
print("\quad \quad \quad 线性拟合截距$b=", round(self.b, 10), end = "$")
print("\quad \quad 线性回归相关系数", "$R^2=", round(self.R_2, 10), "$\par")
print("\quad \quad \quad 截距标准偏差$s_b=", round(self.Sb, 10), end = "$")
print("\quad \quad 截距不确定度为$U_b=", round(self.Ub,10), "$\par")

# 预览但不保存图片
def output(self):
self.dataOutput()
self.drawGraph()
plt.show()

# 保存且预览图片
def save(self, saveName):
self.dataOutput()
self.drawGraph()
plt.savefig(saveName)
plt.show()

# 继承父类,不强制截距为0
class notCrossOrigin(regression):

# 计算父类中的所有数据
def __init__(self, x, y):
regression.__init__(self, x, y)
self.k, self.b = self.regressK_b()
self.R_2 = self.getR_2()
self.Sk = sqrt((1 / self.R_2 - 1) / (self.length - 2)) * self.k
self.Uk = self.Sk * TINV[self.length - 1]
self.Sb = sqrt((1 - self.R_2) / (self.length - 2)) * self.b
self.Ub = self.Sb * TINV[self.length - 1]

# 计算线性回归斜率和截距
def regressK_b(self):
coef = np.polyfit(self.x, self.y, 1)
return coef[0], coef[1]

# 计算线性回归相关系数
def getR_2(self):
coeffs = np.polyfit(self.x, self.y, 1)
p = np.poly1d(coeffs)
yhat = p(self.x)
ybar = np.sum(self.y) / len(self.y)
ssreg = np.sum((yhat - ybar) ** 2)
sstot = np.sum((self.y - ybar) ** 2)
return ssreg / sstot

# 继承父类,强制截距为0
class crossOrigin(regression):

# 计算父类中的所有数据
def __init__(self, x, y):
regression.__init__(self, x, y)
self.k = np.dot(x, y) / np.dot(x, x)
self.R_2, self.Sk= self.getR_2AndS_k()
self.Uk = self.Sk * TINV[self.length - 1]

# 计算线性回归相关系数和斜率标准偏差
def getR_2AndS_k(self):
yhat = [self.k * self.x[i] for i in range(self.length)]
deltay = [self.y[i] - yhat[i] for i in range(self.length)]
ybar = np.sum(self.y) / self.length
newReg = np.dot(deltay, deltay)
sstot = np.dot(self.y - ybar, yhat - ybar)
sy = sqrt(newReg / (len(self.y) - 1))
xrms = sqrt(np.dot(self.x, self.x))
return (1 - newReg / sstot), sy / xrms

# 主函数定义开始
if __name__ == '__main__':

# 原始数据,如果需要处理,添加循环语句进行计算
x = range(1,7,1)
y = [31.2,62.9,95.5,128.4,161.0,194.3]

# 获取类型参数
cross = getInput()

# 对不同参数进行回归
if cross == "0":
crossOrigin(x, y).output()
elif cross == "1":
notCrossOrigin(x, y).output()

elif cross == "01":
crossOrigin(x, y).save("crossOrigin.png")
elif cross == "11":
notCrossOrigin(x, y).save("notCrossOrigin.png")

绘制可微的 \(Bezeir\) 曲线源代码如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from matplotlib import pyplot as plt
from scipy.special import comb
from math import sqrt,pi,exp

# 全局变量,每次绘图前修改曲线颜色,xlabel,ylabel代表横纵坐标
colorLineWhole = "blue"
xLabel = ["Forced frequency $\omega_{f} (\mathrm{s}^{-1})$"]
yLabel = ["Amplitude θ (°)","Phase Difference φ","Amplitude θ (°)"]

# 使用 python 中面向对象特性,编写贝塞尔曲线类
class BezierCurve:

# 初始化点坐标和控制点个数
def __init__(self, list_of_points: list[tuple[float, float]]):
self.list_of_points = list_of_points
self.degree = len(list_of_points) - 1

# Bezier 曲线基函数对应多项式系数数组 B_{i,n}(t) = C_{n}^{i} * (1 - t)^{n - i} * t^{i}
def basis_function(self, t: float) -> list[float]:
assert 0 <= t <= 1, "Time t must be between 0 and 1."
output_values: list[float] = []
for i in range(len(self.list_of_points)):
output_values.append(comb(self.degree, i) * ((1 - t) ** (self.degree - i)) * (t**i))
return output_values

# 计算 Bezier 曲线函数在 t∈[0,1] 处的值
def bezier_curve_function(self, t: float) -> tuple[float, float]:
assert 0 <= t <= 1, "Time t must be between 0 and 1."
basis_function = self.basis_function(t)
x = 0.0
y = 0.0
for i in range(len(self.list_of_points)):
x += basis_function[i] * self.list_of_points[i][0]
y += basis_function[i] * self.list_of_points[i][1]
return (x, y)

# 绘制给定 n 个控制点下的 Bezier 曲线
def plot_curve(self, step_size: float = 0.001):
to_plot_x: list[float] = []
to_plot_y: list[float] = []
t = 0.0
while t <= 1:
value = self.bezier_curve_function(t)
to_plot_x.append(value[0])
to_plot_y.append(value[1])
t += step_size
x = [i[0] for i in self.list_of_points]
y = [i[1] for i in self.list_of_points]
plt.plot(to_plot_x, to_plot_y, color = colorLineWhole, linewidth = 0.88)

# x 排序从大到小,并保证数据对应
def sortXY(x, y):
data = []
for i in range(len(x)):
data.append([x[i],y[i]])
data.sort(key = lambda x: x[0])
x = [i[0] for i in data]
y = [i[1] for i in data]
return x, y

# 计算两个点的欧式距离
def distance(p1,p2):
return sqrt((p1[0] - p2[0]) * (p1[0] - p2[0]) + (p1[1] - p2[1]) * (p1[1] - p2[1]))

# 计算四个点对应两条直线的交点
def intersectPoints(p1, p2, p3, p4):
k1 = (p2[1] - p1[1]) / (p2[0] - p1[0])
b1 = p1[1] - k1 * p1[0]
k2 = (p4[1] - p3[1]) / (p4[0] - p3[0])
b2 = p3[1] - k2 * p3[0]
return [(b1 - b2) / (k2 - k1), (k2 * b1 - k1 * b2) / (k2 - k1)]

# 计算由上述所生成三个点所构成三角形的内心
def angularBisector(p1,p2,p3,p4):
interP = intersectPoints(p1,p2,p3,p4)
a = distance(p2, p3)
b = distance(p3, interP)
c = distance(p2, interP)
return [(a * interP[0] + b * p2[0] + c * p3[0]) / (a + b + c),
(a * interP[1] + b * p2[1] + c * p3[1]) / (a + b + c) ]

# 计算给定离散点生成的 Bezier 曲线
def pointdBezierGraph(x,y,colorPoint):
for i in range(len(x)):
plt.scatter(x[i], y[i], color = colorPoint, marker = "+", s = 24, linewidth = 0.88)
averageX = (x[-1] - x[0]) / len(x)
x.insert(0, x[0] - averageX)
x.append(x[-1] + averageX)
y.insert(0, y[0])
y.append(y[-1])
for i in range(len(x) - 3):
p1 = [x[i], y[i]]
p2 = [x[i + 1], y[i + 1]]
p3 = [x[i + 2], y[i + 2]]
p4 = [x[i + 3], y[i + 3]]
I = angularBisector(p1, p2, p3, p4)
BezierCurve([p2, I, p3]).plot_curve()

# 自动处理数据,传入两个列表,线条颜色,标记点颜色, 绘制 Bezier 曲线
def drawBezier(x,y,colorLine,colorPoint):
x,y = sortXY(x,y)
global colorLineWhole
colorLineWhole = colorLine
pointdBezierGraph(x,y,colorPoint)

# 主函数定义开始
if __name__ == "__main__":
x = [1.575,1.553,1.531,1.516,1.501,1.487,1.479,1.472,1.465,1.451,1.443,1.427,1.413,1.391,1.369]
for i in range(len(x)):
x[i] = 2 * pi / x[i]

y = [15,25,35,44,58,76,87,99,112,130,138,147,152,156,160]
drawBezier(x,y,"green","blue")

plt.xlabel(xLabel[1])
plt.ylabel(yLabel[0])
# plt.savefig("图片.png",dpi = 2000)
plt.show()

Matplotlib-For-Lab-of-Physics
https://lr-tsinghua11.github.io/2022/04/30/%E7%BC%96%E7%A8%8B/python%20%E7%BA%BF%E6%80%A7%E5%9B%9E%E5%BD%92%E5%A4%84%E7%90%86%E6%95%B0%E6%8D%AE/
作者
Learning_rate
发布于
2022年4月30日
许可协议