阻尼振动和受迫振动

姓名:鲁睿 班级:未央-软11 学号: 2021012539 实验时间: 2022 年 4 月 13 日 下午 实验编号: 16 号

摘要

与严格的简谐运动相比,受阻尼限制或者外力驱使下的振动现象更符合生活实际,本实验则使用波尔共振仪对两种现象进行分析。从理论上,使用二阶齐次常系数常微分方程相关知识求解各种物理量(如振幅、相位差、周期数)的解析解,同时为方便分析,探究受迫振动达到稳态前的瞬态过程,得到其近似解析解。从实验上,在不同阻尼约束下观测固有频率的变化,测量并验证受迫振动中振幅 *A*、频率 ω、相位 φ 之间的关系,计算品质因数 *Q*。实验中发现周期随振幅增加而减少,对 模型修正后计算了周期和振幅之间的关系,利用数据作图,与修正后的模型相符。

鉴于 Excel 软件绘制曲线图直观上曲线不可微,使用 python 中绘图库 matplotlib 以及开源科学计算库 scipy,编写贝塞尔曲线类并平滑且可微地连接各散点, 与手绘曲线图结果相仿,提高实验作图的美观性;同时使用最小二乘法拟合直线,并 将实验测得的离散点与理论值相比较,两者基本相符,有效地验证了理论公式。

关键词: 波尔共振仪; 阻尼振动; 受迫振动; 品质因数; 瞬态过程

目录

1	实验	目的		3
2	实验	仪器		3
3	实验	内容		3
	3.1	实验原	理	3
	3.2	实验步	·骤	7
		3.2.1	实验准备	7
		3.2.2	(A) 观测欠阻尼振动运动规律	7
		3.2.3	(B) 观测受迫振动运动规律	8
		3.2.4	(C) 观测受迫振动的瞬态过程运动规律	8
	3.3	数据处	·理	9
		3.3.1	观测欠阻尼运动规律,计算仪器的固有频率以及品质因数	9
		3.3.2	观测欠阻尼运动规律,观测幅频特性	11

4 实验技巧

5	讨论	17
6	绘图源代码	19
7	原始数据	23

插图

1	平面涡卷弹簧构造	3
2	不同阻尼系数下的振动曲线 $\theta(t)$	4
3	波尔共振仪结构示意图	7
4	零阻尼下振幅对数和振动次数关系图	9
5	阻尼 2 振幅随振动次数曲线图	11
6	阻尼 4 振幅随振动次数曲线图	11
7	阻尼 2 振幅与频率曲线图	12
8	阻尼 2 相位差与频率曲线图	12
9	阻尼 4 振幅与频率曲线图	13
10	阻尼 4 相位差与频率曲线图	13
11	不同阻尼系数下受迫振动振幅与强迫力频率关系图	13
12	不同阻尼系数下受迫振动相位差与强迫力频率关系图	14
13	受迫振动中暂态振幅与时间曲线图(阻尼 2)	15
14	受迫振动中暂态振幅与时间曲线图(阻尼4)	16
15	无阻尼周期随振幅平方变化拟合直线	19
16	波尔实验原始数据第一张	23
17	波尔实验原始数据第二张	24
18	波尔实验原始数据第三张	25

表 格

1	阻尼振动和受迫振动仪器 3
2	无外加阻尼条件下振幅与周期的关系
3	外加阻尼条件下振幅与周期数据表 10
4	受迫振动中稳态振幅和相位与强迫力频率关系表
5	受迫振动中暂态振幅与时间关系表(阻尼 2) 14
6	受迫振动中暂态振幅与时间关系表(阻尼 4)
7	固定种类、张力、谐振次数不变, f 与弦长 L 的关系 18

1 实验目的

(1) 观测两种振动的规律,学习如何使用波尔共振仪测量相关物理量;

(2) 仅有阻尼的约束下,测量振幅与周期的关系,计算不同阻尼条件下的品质因数;

(3) 在周期性外力驱使下,测量振幅、相位差等物理量与外力频率的关系,比较不同阻尼对上述物理量的影响;

(4) 测量暂态过程中的振幅、相位差等物理量,并验证其满足近似表达式;

(5) 使用 python 编程语言处理数据并绘制图像。

2 实验仪器

名称	型号	参数	精度	
波尔共振仪	BG-2	$600 \mathrm{~mm}$	$2 \times 10^{-3} s$ $2 \times 10^{-4} s$	选择开关为1 选择开关为10

表 1: 阻尼振动和受迫振动仪器

3 实验内容

3.1 实验原理

1 自由阻尼振动运动方程的导出

在无外力情况下,共振仪中的摆轮作自由粘滞阻尼振动。设摆轮转动惯量为 J,摆 轮与弹簧组成了一个扭转振动系统。设弹簧刚度系数为 k,为弹簧产生单位角形变所需 的外力矩。仪器中用了平面涡卷弹簧,弹性恢复力矩 $M_{\rm S}$ 正比于弹簧端点偏离平衡位置 的转角 θ ,即 $M_{\rm S} = -k\theta$,其中平面涡卷弹簧构造如下,为阿基米德螺旋线:

图 1: 平面涡卷弹簧构造

Page 3/25

系统还受到粘滞阻尼,该阻尼与速度或角速度成正比。如果转振系统只具有粘滞阻 尼力矩,其大小等于角速度 d θ /dt 与阻尼力矩系数 γ 的乘积,可以得到转角 θ 的方程

$$J\frac{\mathrm{d}^{2}\theta}{\mathrm{d}t^{2}} + \gamma\frac{\mathrm{d}\theta}{\mathrm{d}t} + k\theta = 0 \tag{1}$$

记ω0代表标准简谐运动下的振动频率,其值为

$$\omega_0 = \sqrt{\frac{k}{J}} \tag{2}$$

定义阻尼系数 $\beta = \frac{\gamma}{2J}$,可得方程 $\frac{d^2\theta}{dt^2} + 2\beta \frac{d\theta}{dt} + \omega_0^2 \theta = 0$,对该方程无量纲化操作 定义临界阻尼力矩系数 $\gamma_c = 2\sqrt{kJ} = 2J\omega_0$,定义参数阻尼比 ζ 为两阻尼系数之比

$$\zeta \equiv \frac{\gamma}{\gamma_c} = \frac{\gamma}{2\sqrt{kJ}} \tag{3}$$

运动方程可以改写成如下形式,为二阶常系数常微分方程

$$\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} + 2\zeta\omega_0\frac{\mathrm{d}\theta}{\mathrm{d}t} + \omega_0^2\theta = 0 \tag{4}$$

计算特征值 $\lambda_{1,2} = \omega_0(-\zeta + \sqrt{\zeta^2 - 1}),$ 讨论 $\sqrt{\zeta^2 - 1}$ 是否为虚数得 不同 ζ 相应运动状态 $\begin{cases} \zeta = 1, \theta(t) = \theta_0 e^{-\omega_0 t} \ \text{临界阻尼} \\ \zeta > 1, \theta(t) = e^{-\beta t} \left(\theta_2 e^{\sqrt{\beta^2 - \omega_0^2 t}} + \theta_3 e^{-\sqrt{\beta^2 - \omega_0^2 t}} \right) \ \text{过阻R} \\ \zeta < 1, \theta(t) = \theta_0 e^{-\beta t} \cos \left(\omega_u t + \varphi_0 \right), \omega_u = \sqrt{\omega_0^2 - \beta^2} \ \text{欠阻R} \end{cases}$

图 2: 不同阻尼系数下的振动曲线 $\theta(t)$

在实验过程中,默认摆轮处于欠阻尼状态,利用光电门测量每次振动的振幅,以及 累积法测量平均时间,得到振幅和时间的关系。该欠阻尼振动为振幅不断衰减的振动, 振动周期理论上为 ______

$$T = \frac{2\pi}{\sqrt{\omega_0^2 - \beta^2}}$$
(5)

假设阻尼系数恒定不变,每次振动周期不变,第 n 个周期后记录的振幅理论上为

$$\theta_n = \theta_0 e^{-\beta(nT)} \tag{6}$$

在处理数据中,需要将上式取对数,得到

$$\ln\left(\theta_{n}\right) = \ln\left(\theta_{0}\right) - \beta T n - \beta t_{0} \tag{7}$$

便可以通过最小二乘法拟合得到最小阻尼是的阻尼系数 β ,再结合平均后的 T 值, 结合公式 (5) 便可解得固有角频率 ω_0

2 描述阻尼振动的参量——品质因素

品质因素 Q(Quality Factor):系统共振锐度或频率选择性的量度。一般定义为系统 储能 E 与周期能耗 ΔE 之比 $(E/\Delta E)$ 的 2π 倍,是机械振动系统中的常用定义,其定 义式

$$Q \equiv 2\pi \frac{E}{|\Delta E|}$$
(8)

在一个周期内损失的能量, 当 β 较小时, E 近似与振幅的平方成正比, 由此可得 Q 值为:

$$Q \approx \frac{2\pi\theta_n^2}{\theta_n^2 - \theta_{n+1}^2} = \frac{2\pi}{1 - \left(\frac{\theta_{n+1}}{\theta_n}\right)^2} = \frac{2\pi}{1 - e^{-2\beta T}} \approx \frac{2\pi}{2\beta T_0} = \boxed{\frac{\omega_0}{2\beta}} \tag{9}$$

品质因数 Q 是单自由度振动系统共振系统频率选择性的量度,这一表述广泛应用于 机械、声学、电磁学等系统。[1] 例如,在机械系统中,Q 等于阻尼比倒数之半,一般只 适用于弱阻尼系统,近似等于 π 除以对数减缩。ISO/GB 标准中的电磁学量以及单位体 系中提到,无辐射条件下能定义品质因素,例如不考虑电磁振荡辐射能量含电容、电感 电路中的品质因素。

可见该概念在物理学中的通用性,研究各种物理分支的思想是可以相互借鉴的,对 于不同工科衔接方向也是如此。

3 受迫振动运动方程的导出

在周期外力矩 $M \cos \omega t$ 激励下,在公式 (1) 处增加该外部力矩 M_{ext} ,其方程式为

$$\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} + 2\zeta\omega_0\frac{\mathrm{d}\theta}{\mathrm{d}t} + \omega_0^2\theta = \frac{M}{J}\cos\omega t \tag{10}$$

由二阶常系数微分方程的解为特解加上通解,可得其解一部分为上述方程的特解, 另一部分对应受迫振动产生的振动,显然同频率振动为其特解,从而在欠阻尼条件下得 到其通解

$$\theta(t) = \theta_i \exp\left(-\zeta\omega_0 t\right) \cos\left(\sqrt{1-\zeta^2}\omega_0 t + \phi_i\right) + \theta_m \cos(\omega t - \phi)$$
(11)

考虑经过足够长时间后, $t \in \infty$, 通解项 $\rightarrow 0$, 当 $t \gg_{\tau} = (\zeta \omega_0)^{-1}$ (如 $t > 5\tau$) 后, 就 得到稳态解

$$\theta(t) = \theta_m \cos(\omega t - \phi) \tag{12}$$

将此稳态解代入公式 (10), 计算得到

$$\begin{cases}
\theta_m = \frac{M/k}{\sqrt{\left(1 - \omega^2/\omega_0^2\right)^2 + \left(2\zeta\omega/\omega_0\right)^2}} \\
\phi = \arctan\frac{2\zeta\left(\omega/\omega_0\right)}{1 - \omega^2/\omega_0^2}
\end{cases}$$
(13)

对上述表达式讨论有,当振幅 θ_m 达到最大时,振动系统发生共振,此时,系统频率 为共振频率。由 (13) 式知以及一元二次函数相关知识有,当且仅当 $\omega = \sqrt{\omega_0^2 - 2\beta^2}$ 时, 稳态振幅达到最大,此时振幅 $\theta_{\max} = \frac{\omega_0^2 A_D}{2\beta\sqrt{\omega_0^2 - \beta^2}}$,相位差 $\varphi_{\max} = \arctan \frac{\omega}{\beta}$ 。

考虑特殊情形,当系统处于弱阻尼状态下, $\beta \ll \omega_0$,此时由 $\omega = \sqrt{\omega_0^2 - 2\beta^2} \approx \omega_0$, 共振频率和固有频率近似相等,符合直观。此时代入公式(13),得到最大振幅 $\theta_{\text{max}} = \frac{\omega_0^2 \cdot A_D}{|\omega_0^2 - \omega^2|} \approx QA_D$,即近似为品质因数与外力振幅的乘积,对应 $\varphi = \frac{\pi}{2}$

4 受迫振动暂态过程方程的导出

清莱大学 未央书院

上述受迫振动结果为稳态时的情况, 现研究其达到稳态前的暂态过程。由公式 (11), 在 $\beta << \omega_0$ 的近似条件下, 这部分的暂态过程可以表示为

$$\theta = \theta_m \left(1 - e^{-\beta t} \right) \cos \left(\omega_r t - \varphi \right) \tag{14}$$

通过绘制理论曲线和实验所测得点,可以验证该暂态过程的合理性。在电路学中, RCL 电路在达到稳定振动状态之前也存在暂态过程,说明力学的相关现象与电磁学有 相通的地方。

3.2 实验步骤

3.2.1 实验准备

阻尼开关处于"0"位置时,调整波尔共振仪1作为实验准备:

- (1). 打开电源开关,关闭电机和闪光灯开关,将门开关设置为"0",微调光电门 H,I使其达到最佳状态,防止与摆锤或相位差测量板接触。
- (2). 手动调整电机偏心装置可使角度指针盘 F 转盘上的 0 位标记线指示 0 度。(否则带动连杆使得摇杆位于非零位置,引起实验误差)检查摇臂 M 的长槽 C 和 (静态) 槽使摆锤垂直,即严格保证为无外力驱使状态,检查光电门 I 是否位于平衡位置。

图 3: 波尔共振仪结构示意图

然后针对(欠)阻尼振动、受迫振动、暂态振动三种情形逐一进行实验,每种情形 的实验结果记录于表格中。

3.2.2 (A) 观测欠阻尼振动运动规律

在实验准备好后,针对具体实验操作如下:

- (1). 开关置于摆轮,摆动摆轮使其偏离平衡位置 150 到 180 度。松开手时,检查摆动 轮的自由摆动。一般来说,振动衰减非常缓慢。避免摆锤、光电门和弹簧间无摩 擦;
- (2). 周期选择置于 10 位置,记录过程中每次 $10\overline{T}_d$ 值;
- (3). 阻尼开关 0 档连续测量 50 个振幅和 5 个十周期,分别记录振幅和周期相关数据, 在共振点处附近可以增加测量数据数量;
- (4). 使用理论推导的公式计算固有角频率 ω₀ 并计算不确定度;
- (5). 测量另外两种阻尼状态的振幅和周期,并计算不确定度以及品质因数;

3.2.3 (B) 观测受迫振动运动规律

- (1). 开启电机开关,将开关置于强制力处,周期选择为 mathbf1,可以通过旋转强迫
 力周期旋钮改变电机运动角频率 ω (即受迫力频率);
- (2). 在周期范围为 0.93T₀ ~ 1.07T₀ 测量振幅、相位差与频率的关系,要求数据点尽量 分布在共振频率左右侧,方便拟合曲线以及计算共振频率,当仪器测量出的振幅 不再变化,且闪光灯在盘面上照射出的刻度不再移动,即认为受迫振动已达到稳态。
- (3). 将不同阻尼系数的幅频或相频特性曲线绘制在一张图中加以分析;
- (4). 从幅频曲线中读出 ω_r 和 ω_{\pm} , 计算此时的品质因数 Q, 与 A 的结果进行比较;
- 3.2.4 (C) 观测受迫振动的瞬态过程运动规律
- (1). 关闭电机,调整波尔共振仪在其中一个阻尼的约束下,待摆轮自由摆动尽可能停止;
- (2). 打开电机开关,观察摆轮在外力驱动下从静止达到稳态的过程,在每个周期测量
 一次振幅值 θ_i,记录振幅随时间的变化;
- (3). 将理论计算值与所测得值作图比较,观察是否存在偏差。

3.3 数据处理

3.3.1 观测欠阻尼运动规律,计算仪器的固有频率以及品质因数

对于实验中的欠阻尼运动、阻尼 "2" 档、阻尼 "4" 档三种情况记录 50 次振幅角度 数据,并记录十次振动用的时间,结果如下

振动次数	1-10		11-20		21-30		31-40		41-50	
	142	137	133	129	125	121	117	113	109	105
	141	137	133	129	124	121	116	112	108	104
振幅大小 θ/°	140	146	131	127	123	119	115	111	107	103
	139	135	131	127	123	119	114	110	106	103
	138	134	130	126	122	118	113	109	105	102
每十周期计时 T ₁₀ /s	14.722		14.	733	14.	742	14.	749	14.	758
平均周期 \overline{T}/s	1.4	722	1.4	733	1.4	742	1.4	749	1.4	758

表 2: 无外加阻尼条件下振幅与周期的关系

周期平均值 $\overline{T_{10}} = \frac{14.722 + 14.733 + 14.742 + 14.749 + 14.758}{5} = 14.741$ s, 标准偏差 $s = \sqrt{\frac{\sum_{i=1}^{5} (T_{10i} - \overline{T_{10}})^2}{(n-1)n}} = 0.0062s$, 使用 Excel 软件计算 t 因子得 $t_{0.95,4} = 2.78$, A 类不 确定度 $U_A = t_{0.95,4} \frac{s}{\sqrt{5}} = 0.008$ s, 这远远大于仪器误差限 $\Delta_{INS} = 0.0002$ s, 则不确定度 可只考虑 A 类分量。

则周期的测量结果可以表示为 (1.4741± 0.0008)s 对振幅和振动次数相应作图如下:

图 4: 零阻尼下振幅对数和振动次数关系图

计算相应的误差分析得

线性拟合斜率 k = -0.00678 调用 Excel 中 TINV 函数 $t_{0.95.49} = 2.009575$ 斜率标准偏差 $s_k = -4.6 \times 10^{-5}$ 斜率不确定度为 $U_b = -9.16 \times 10^{-5}$ 又由公式 $k = -\frac{\beta}{T_{J}}$, 得:

$$\beta = -\frac{k}{T_d} = \frac{0.00678}{1.4741} = 0.004091 (rad/s)$$

由于这里两个变量都具有不确定度,且为商的形式,故由方和根合成,有:

$$\frac{U_{\beta}}{\beta} = \sqrt{\left(\frac{U_k}{k}\right)^2 + \left(\frac{U_{T_d}}{T_d}\right)^2}$$

代入计算有 $\frac{U_{\beta}}{\beta} = \sqrt{(9.16 \times 10^{-5})^2 + (\frac{0.008}{14.741})^2} = 5.5 \times 10^{-4}$ 则得到 $\Delta_{\beta} = 3 \times 10^{-6}$,由 数据修约规则得到 $\beta = (4.091 \pm 0.003) \times 10^{-3} (rad/s)$

根据公式, $\omega_d = \sqrt{\omega_0^2 - \beta^2} = \frac{2\pi}{T_d}$, 得到 $\omega_0^2 = \left(\frac{2\pi}{T_d}\right)^2 + \beta^2$ 。代入得 $\omega_0 = 4.2623874 (rad/s)$ 而计算得到 $\omega_d = 4.2623893$ (rad/s), 两者的相对偏差 $\Delta_r = O(10^{-1})$, 因此二者几乎可以 看作相等。

阻尼"2"档	1	2	3	4	5	6	7	8	9	10	11	12
振幅 $\theta/^{\circ}$	113	103	93	85	77	71	65	60	54	50	45	41
周期/s	1.4	177	1.	479	1.	480	1.	481	1.	481	1.	480
阻尼"4"档	1	2	3	4	5	6	7	8	9	10	11	12
振幅 $\theta/^{\circ}$	112	96	82	70	61	52	45	38	32	28	23	20
周期/s	1.4	82	1.4	83	1.4	82	1.4	82	1.4	83	1.4	82

对阻尼2和阻尼4对应的线性回归图如下所示:阻尼2对应的误差计算如下

线性拟合斜率 k = -0.091097 调用 Excel 中 TINV 函数 $t_{0.95.11} = 2.200985$ 斜率标准偏差 $s_k = -0.000641$ 斜率不确定度为 $U_b = -0.001412$

阻尼4对应的误差计算如下

线性拟合斜率 k = -0.156678 调用 Excel 中 TINV 函数 $t_{0.95,11} = 2.200985$ 斜率标准偏差 $s_k = -0.001122$ 斜率不确定度为 $U_b = -0.002470$ $\sum_{i} T_i$ $\sum_{i} T_i$ 周期平均值为 $\overline{T}_2 = \frac{i}{6} = 1.47967s, \overline{T}_4 = \frac{i}{6} = 1.48233s,$ 计算标准偏差 $s_{T_2} = 1.48233s$

图 5: 阻尼 2 振幅随振动次数曲线图

图 6: 阻尼 4 振幅随振动次数曲线图

 $\sqrt{\frac{\sum_{i=1}^{4} (T_{2i} - \overline{T_2})^2}{(n-1)n}} = 0.00061s, s_{T_4} = \sqrt{\frac{\sum_{i=1}^{4} (T_{4i} - \overline{T_4})^2}{(n-1)n}} = 0.00021 \text{ st } \text{B} \neq i \neq t_{0.95,5} = 2.57, \ \text{Am A} \notin \mathbf{X} \notin \mathfrak{m} \mathsf{c} \mathsf{g} \ U_{T_2A} = t_{0.95,5} \frac{s}{\sqrt{6}} = 0.00104s, U_{T_4A} = t_{0.95,5} \frac{s}{\sqrt{6}} = 0.00022s, \ \text{uht } \text{A} \notin \mathbf{X} \oplus \mathfrak{c} \mathsf{g} \notin \mathbf{V}, \ \text{B} \notin \mathbf{X} \oplus \mathfrak{c} \mathsf{g} \texttt{g} \texttt{g} \texttt{m} \mathsf{N} \notin \mathfrak{F} \stackrel{\text{d}}{=}, \ U_2 \approx U_4 \approx \sqrt{U_A^2 + U_B^2} = 0.002s \ \text{p} \\ \text{M} \oplus \mathfrak{f} \mathsf{R} \mathsf{T} \oplus \mathsf{B} \texttt{g} \mathsf{M} \mathsf{M} \mathsf{T}_2 = (1.480 \pm 0.002)s, \ T_4 = (1.482 \pm 0.002)s \ \text{o} \ \text{h} \texttt{N} \diamond \mathsf{A} \stackrel{\text{d}}{=} \mathfrak{F} \stackrel{\text{d}}{=} \mathfrak{F} \\ \mathfrak{g}_2 T_2 = 0.091097, \ \beta_4 T_4 = 0.156678, \ \beta_2 = 0.0616 \text{rad/s}, \ \beta_4 = 0.10569 \text{rad/s}, \ \text{B} \texttt{g} \texttt{m} \\ \mathfrak{h} \mathsf{R} \diamond \mathsf{k} \land \mathfrak{m} \mathsf{c} \mathsf{g} \mathsf{g} \stackrel{\text{d}}{=} \sqrt{\left(\frac{U_k}{k}\right)^2 + \left(\frac{U_{T_2}}{T_2}\right)^2} \approx 1.95 \times 10^{-2}, \ \frac{U_{\beta_4}}{\beta_4} = \sqrt{\left(\frac{U_k}{k}\right)^2 + \left(\frac{U_{T_4}}{T_4}\right)^2} \approx 2.81 \times 10^{-2}, \ \text{h} \& \texttt{H} \mathring{\mathsf{M}} \rend{s}$

$$\beta_2 = (0.062 \pm 0.001) \text{rad/s}, \beta_4 = (0.106 \pm 0.003) \text{rad/s}$$

根据上述推导所得公式 $Q = \frac{\omega_0}{2\beta}$, 无外加阻尼、阻尼"2" 档和阻尼"4" 档下阻尼振动的品质因数估值分别为: $\overline{Q_0} = \frac{\omega_0}{2\beta_0} = \frac{4.264 \text{rad/s}}{2 \times 4.091 \times 10^{-3}} = 521.1, \overline{Q_2} = \frac{\omega_2}{2\beta_2} = \frac{4.2453 \text{rad/s}}{2 \times 0.0580} = 34.23, \overline{Q_4} = \frac{\omega_4}{2\beta_4} = \frac{4.082}{2 \times 0.1129} = 19.99$ 。它们的不确定度可以用 $U_Q = Q\sqrt{\left(\frac{U\omega_0}{\omega_0}\right)^2 + \left(\frac{U\beta}{\beta}\right)^2}$ 进行计算,因此 $U_{Q0} = 521.1\sqrt{\left(\frac{0.006}{4.264}\right)^2 + \left(\frac{0.003}{4.091}\right)^2}} = 0.83, U_{Q2} = 34.23\sqrt{\left(\frac{0.002}{1.480}\right)^2 + \left(\frac{0.001}{0.062}\right)^2} = 0.55, U_{Q0} = 19.99\sqrt{\left(\frac{0.002}{1.482}\right)^2 + \left(\frac{0.003}{0.106}\right)^2}} = 0.57$ 。

因此无外加阻尼、阻尼"2"档和阻尼"4"档下阻尼振动的品质因数分别为:

 $Q_0 = 521.1 \pm 0.8$ $Q_2 = 34.2 \pm 0.6$ $Q_4 = 20.0 \pm 0.6$

3.3.2 观测欠阻尼运动规律,观测幅频特性

阻尼2和阻尼4受迫振动下对应外力周期与振幅、相位相关数据整理如下

阻尼 2	周期/s	振幅/°	周期/s	相位差/°	阻尼 4	周期/s	振幅/°	相位差/°
	1.396	32	1.395	167		1.392	29	159
	1.412	39	1.408	164		1.409	35	152
	1.427	47	1.419	162		1.423	43	147
	1.439	61	1.432	156		1.433	50	139
	1.451	85	1.443	150		1.442	57	128
	1.453	90	1.454	138		1.451	65	118
	1.457	106	1.460	124		1.460	77	107
	1.460	115	1.464	113		1.463	82	96
	1.464	129	1.472	92		1.471	89	85
	1.468	139	1.479	73		1.481	87	73
	1.472	143	1.490	52		1.490	84	61
	1.478	140	1.502	39		1.497	78	51
	1.484	133	1.511	32		1.503	72	40
	1.490	120	1.519	28		1.510	67	33
	1.497	105	1.528	24		1.519	61	29
	1.511	90	1.549	17		1.526	57	29
	1.528	73	1.591	10		1.534	52	29
	1.538	63				1.545	45	29
	1.548	54				1.560	40	29
	1.563	45				1.571	35	29
	1.575	40				1.586	30	29
	1.592	36				1.586	30	29

1.51

表 4: 受迫振动中稳态振幅和相位与强迫力频率关系表

使用 matplotlib 生成的 figure 应用程序,可以在绘图中使用放大镜功能查看 $\theta = \frac{\sqrt{2}}{2} \theta_{max}$ 直线与曲线的交点可以精确读值,并将结果反映在图像中:

图 7: 阻尼 2 振幅与频率曲线图

图 8: 阻尼 2 相位差与频率曲线图

图 10: 阻尼 4 相位差与频率曲线图

由品质因数公式 $Q = \frac{\omega_r}{\omega_+ - \omega_-}$, 代入图中数据可得"2"档的品质因数为

$$Q_2 = \frac{2\pi/1.480}{3.31657 - 4.18344} = 31.89$$

与上部分结果 34.2 相近,误差为 6.7%;"4"档的品质因数为

$$Q_4 = \frac{2\pi/1.482}{4.3365753 - 4.1445876} = 22.08$$

与上部分结果 20.0 相近,误差为 10% 将两种曲线绘制于同一画布中,图像如下:

图 11: 不同阻尼系数下受迫振动振幅与强迫力频率关系图

图 12: 不同阻尼系数下受迫振动相位差与强迫力频率关系图

(3) 探究瞬态过程振幅和时间的关系

实验中测得数据整理成表格如下对阻尼 2 振动的测定,初始时间为 $t_0 = 0.000s$,周期数 n 对应的时间为 $t_n = nT = 1.471ns$;

周期数	1	2	3	4	5	6	7	8	9	10
振幅/°	18	28	48	56	64	70	76	80	87	91
周期数	11	12	13	14	15	16	17	18	19	20
振幅/°	96	100	103	107	110	113	115	118	122	124
周期数	21	22	23	24	25	26	27	28	29	30
振幅/°	125	127	129	130	131	132	134	135	135	136
周期数	31	32	33	34	35	36	37	38	39	40

表 5: 受迫振动中暂态振幅与时间关系表(阻尼 2)

绘制振幅和时间关系如下图所示:

图 13: 受迫振动中暂态振幅与时间曲线图(阻尼 2)

对阻尼 4 振动的测定,在测定时存在初始时间,为 $t_0 = 0.499s$,从而计算对应的时间为 $t_n = 0.499 + 1.471 \cdot (n-1) = (1.471n + 0.972)s$,振幅和周期数数据整理成表格如下:

周期数	1	2	3	4	5	6	7	8	9	10
振幅/°	12	22	31	39	46	52	56	60	64	67
周期数	11	12	13	14	15	16	17	18	19	20
振幅/°	70	72	74	75	76	78	79	80	81	81
周期数	21	22	23	24	25	26	27	28	29	30
振幅/°	81	82	82	83	83					

表 6: 受迫振动中暂态振幅与时间关系表(阻尼 4)

图 14: 受迫振动中暂态振幅与时间曲线图(阻尼 4)

理论计算曲线为 $\theta_n = \theta_m \left(1 - e^{-\beta t} \right) \approx 143 \left(1 - e^{-0.062t} \right)$,与离散数据点对照如下:

(4) 推导平均输入功率表达式

在稳态时,由品质系数定义 $Q = \frac{2\pi E}{\Delta E}$,以及 $E = \frac{1}{2}k\theta_m^2$,可以得到一个周期内的损耗能量 $\Delta E = \frac{\pi k\theta_m^2}{Q}$,而功率定义为单位时间内的能量变化量 $P = \frac{E}{T_0}$,则

$$P = \frac{\pi k \theta_m^2}{Q \cdot \frac{2\pi}{\omega_0}} = \boxed{\frac{k \omega_0 \theta_m^2}{2Q}}$$

一个周期内提供给振动系统的能量与电磁阻尼消耗的能量相等。因此,在稳态时,每个周期内的输入功率为 $P = \frac{k\omega_0 \theta_m^2}{2Q}$ 。

4 实验技巧

(1). 只有测受迫振动相频特性时才开启闪光灯,读完数据后迅即关闭。注意不要看向闪光灯,闪光灯应该向下照射仪器底座,依靠反射光以辨认转盘刻线,闪光灯本身具有损耗属性,尽量减少读数次数;

- (2). 使用电机前,必须手动调整零刻度线,保证实验的精确度;
- (3). 实验在采集数据点时需要等待稳定后再进行读数,在共振点处附近测量多组数据, 使图线更加平滑;
- (4). 即便是刚体坚硬程度趋于 +∞,由狭义相对论限制,世界上不存在刚体,否则超 光速可以达到。对本实验而言,在不同振幅条件下材料将会受到形变,从而固有 频率存在一定微量改变

5 讨论

(1) β 的量纲是什么?

由方程 $\frac{d^2\theta}{dt^2} + 2\beta \frac{d\theta}{dt} + \omega_0^2 \theta$ 可以看出 $\beta \dot{\theta}$ 与 $\omega_0^2 \theta$ 的量纲相同, 从而可以得到 β 与 ω 的量纲相同, 均为 s⁻¹

(2) 在探究受迫振动时如何判断达到稳定状态?

当观察到波尔共振仪振幅显示的示数保持不变时基本可以认为,振动系统达到稳定状态。

(3) 为什么在测定固有频率时明显发现周期随振幅的增加而单调递减?

在实验过程中,可以明显地发现当弹簧在一侧时形成卷状,另一侧形成舒展状,而 弹簧的刚度系数 k 在相关专业手册 [2] 中指出 $T' = \frac{Ebh^3}{12K_l l}$,可以认为这些物理量只与弹簧材料有关,在实验过程中不会发生变化,则对 (3) 式中转动惯量加以修正,

$$(J_0 + \lambda\theta)\frac{d^2\theta}{dt^2} + k\theta = 0(|\lambda\theta| \ll J_0)$$
(15)

对其进行小量近似,在后者计算中发现,一阶小量会被消去,从而展开到二阶(级数展 开)

$$\frac{d^2\theta}{dt^2} \approx -\frac{k\theta}{J_0} \left(1 - \frac{\lambda\theta}{J_0} + \left(\frac{\lambda\theta}{J_0}\right)^2\right) \tag{16}$$

两边乘以 dθ 积分整理得到

$$\frac{d\theta}{dt} = \sqrt{\frac{k}{J_0}(\theta_m^2 - \theta_0^2) - \frac{2k\lambda}{3J_0^2}(\theta_m^3 - \theta^3) + \frac{k\lambda^2}{2J_0^3}}$$
(17)

Page 17/25

考虑两侧弹簧转动惯量一者大、一者小, 需要计算 $(-\theta_m, 0)$ 以及 $(0, \theta_m)$ 两者的时间之 和乘以 2 得到周期

$$T = 2(\int_{-\theta_m}^{0} + \int_{0}^{\theta_m}) \frac{d\theta}{\sqrt{\frac{k}{J_0}(\theta_m^2 - \theta^2) - \frac{2k\lambda}{3J_0^2}(\theta_m^3 - \theta^3) + \frac{k\lambda^2}{2J_0^3}(\theta_m^4 - \theta^4)}}$$

使用牛顿二项式展开到λ²项有

$$T = 2 \int_{0}^{\theta_{m}} \frac{1}{\sqrt{\frac{k}{J_{0}}(\theta_{m}^{2} - \theta^{2})}} \left(\left(1 - \frac{2}{3} \frac{\lambda}{J_{0}} \frac{\theta_{m}^{2} + \theta \theta_{m} + \theta^{2}}{\theta_{m} + \theta} + \frac{1}{2} \frac{\lambda^{2}}{J_{0}^{2}} (\theta_{m}^{2} + \theta^{2}) \right)^{-\frac{1}{2}} + \left(1 + \frac{2}{3} \frac{\lambda}{J_{0}} \frac{\theta_{m}^{2} + \theta \theta_{m} + \theta^{2}}{\theta_{m} + \theta} + \frac{1}{2} \frac{\lambda^{2}}{J_{0}^{2}} (\theta_{m}^{2} + \theta^{2}) \right)^{-\frac{1}{2}} \right)$$
$$\approx 2 \sqrt{\frac{J_{0}}{k}} \int_{0}^{\theta_{m}} \frac{d\theta}{\sqrt{\theta_{m}^{2} - \theta^{2}}} \left(2 + \frac{\frac{-1}{2} \frac{-3}{2}}{2} \left(-\frac{2}{3}\right) \frac{\lambda}{J_{0}} \left(\frac{\theta_{m}^{2} + \theta \theta_{m} + \theta^{2}}{\theta_{m} + \theta}\right)^{2} \cdot 2 + \frac{1}{4} \frac{\lambda^{2}}{J_{0}^{2}} (\theta_{m}^{2} + \theta^{2}) \cdot 2 \right)$$

换元 $\theta = \theta_m \sin \varphi$ 计算周期有

$$T = 2\sqrt{\frac{J_0}{k}} \left(\pi - \frac{\lambda^2 \theta_m^2}{J_0^2} \int_0^{\frac{\pi}{2}} \frac{1}{2} \left(\frac{\sin^2 \varphi + \sin \varphi + 1}{\sin \varphi + 1}\right)^2 d\varphi - \frac{\lambda^2 \theta_m^2}{J_0^2} \int_0^{\frac{\pi}{2}} \frac{1}{2} (1 + \sin^2 \varphi)) d\varphi$$

进行三角函数运算代入原始周期 $T_0 = 2\pi \sqrt{\frac{J_0}{k}}$,解得

$$T = T_0 (1 - (1 - \frac{2}{3\pi})(\frac{\lambda}{J_0})^2 \theta_m^2)$$

从此公式可以看出, 当 θ_m 增加时, 周期 T 会减少, 使用前面测得的数据 (θ_m 可以用 振幅的中间值近似替代), 计算整理得到下列表格

振幅 (°)	138.9	129.6	121.5	113.0	105.2
周期 (s)	1.4722	1.4733	1.4742	1.4749	1.4758

表 7: 固定种类、张力、谐振次数不变, f 与弦长 L 的关系

使用上述理论推导,将周期和振幅的平方分别作为 Y 和 X 进行拟合,所得拟合直线如下:

图 15: 无阻尼周期随振幅平方变化拟合直线

从拟合直线看出,相关系数为 $R^2 = 0.9976700590023041$ 较高,理论与实际相符。使用上述计算得到的斜率和截距计算 $\frac{\lambda}{I_0}$

$$\frac{-3.524053 \cdot 10^{-4}}{1.480494} = -(1 - \frac{2}{3\pi})(\frac{\lambda}{J_0})^2$$

得到 $\frac{\lambda}{J_0} \approx 0.014748 \ll 1$, 说明上述假设合理

6 绘图源代码

有关最小二乘法代码在上篇弦振动实验报告中给出(可以参考本人博客https:// lr-tsinghua11.github.io/2022/04/15/Program/Matplotlib-For-Lab-of-Physics/), 这里主要讨论绘制曲线图的代码。本 python 代码使用 Bezier 曲线绘制,其中曲线的控 制点使用三角形内心计算,使得曲线更加可微,源代码如下:

```
# 导入库
from matplotlib import pyplot as plt
from scipy.special import comb
from math import sqrt,pi,exp
```

```
# 全局变量,每次绘图前修改曲线颜色, xlabel,ylabel代表横纵坐标
colorLineWhole = "blue"
xLabel = ["Forced frequency $\omega_{f} (\mathrm{s}^{-1})$"]
yLabel = ["Amplitude (°)", "Phase Difference ", "Amplitude (°)"]
# 使用 python 中面向对象特性,编写贝塞尔曲线类
class BezierCurve:
   # 初始化点坐标和控制点个数
   def __init__(self, list_of_points: list[tuple[float, float]]):
       self.list_of_points = list_of_points
       self.degree = len(list_of_points) - 1
   # Bezier 曲线基函数对应多项式系数数组 B_{i,n}(t) = C_{n}^{i} * (1 - t)^
                                       {n - i} * t^{i}
   def basis_function(self, t: float) -> list[float]:
       assert 0 <= t <= 1, "Time t must be between 0 and 1."
       output_values: list[float] = []
       for i in range(len(self.list_of_points)):
           output_values.append(comb(self.degree, i) * ((1 - t) ** (self.
                                               degree - i)) * (t**i))
       return output_values
   # 计算 Bezier 曲线函数在 t [0,1] 处的值
   def bezier_curve_function(self, t: float) -> tuple[float, float]:
       assert 0 <= t <= 1, "Time t must be between 0 and 1."
       basis_function = self.basis_function(t)
       x = 0.0
       y = 0.0
       for i in range(len(self.list_of_points)):
           x += basis_function[i] * self.list_of_points[i][0]
           y += basis_function[i] * self.list_of_points[i][1]
       return (x, y)
   # 绘制给定 n 个控制点下的 Bezier 曲线
   def plot_curve(self, step_size: float = 0.001):
       to_plot_x: list[float] = []
       to_plot_y: list[float] = []
       t = 0.0
       while t <= 1:
```


📠 戊苯大学 未央书院

```
value = self.bezier_curve_function(t)
                                to_plot_x.append(value[0])
                                to_plot_y.append(value[1])
                                t += step_size
                     x = [i[0] for i in self.list_of_points]
                     y = [i[1] for i in self.list_of_points]
                     plt.plot(to_plot_x, to_plot_y, color = colorLineWhole, linewidth =
                                                                                                                              0.88)
# x 排序从大到小,并保证数据对应
def sortXY(x, y):
          data = []
         for i in range(len(x)):
                     data.append([x[i],y[i]])
          data.sort(key = lambda x: x[0])
          x = [i[0] \text{ for } i \text{ in } data]
          y = [i[1] \text{ for } i \text{ in } data]
          return x, y
# 计算两个点的欧式距离
def distance(p1,p2):
          return sqrt((p1[0] - p2[0]) * (p1[0] - p2[0]) + (p1[1] - p2[1]) * (p1[1] - p2[1]) 
                                                                                                                  ] - p2[1]))
# 计算四个点对应两条直线的交点
def intersectPoints(p1, p2, p3, p4):
          k1 = (p2[1] - p1[1]) / (p2[0] - p1[0])
          b1 = p1[1] - k1 * p1[0]
          k2 = (p4[1] - p3[1]) / (p4[0] - p3[0])
          b2 = p3[1] - k2 * p3[0]
          return [(b1 - b2) / (k2 - k1), (k2 * b1 - k1 * b2) / (k2 - k1)]
# 计算由上述所生成三个点所构成三角形的内心
def angularBisector(p1,p2,p3,p4):
          interP = intersectPoints(p1,p2,p3,p4)
          a = distance(p2, p3)
          b = distance(p3, interP)
          c = distance(p2, interP)
    return [(a * interP[0] + b * p2[0] + c * p3[0]) / (a + b + c),
                                   (a * interP[1] + b * p2[1] + c * p3[1]) / (a + b + c) ]
```

```
# 计算给定离散点生成的 Bezier 曲线
def pointdBezierGraph(x,y,colorPoint):
           for i in range(len(x)):
                      plt.scatter(x[i], y[i], color = colorPoint, marker = "+", s = 24,
                                                                                                                                  linewidth = 0.88)
           averageX = (x[-1] - x[0]) / len(x)
          x.insert(0, x[0] - averageX)
          x.append(x[-1] + averageX)
          y.insert(0, y[0])
          y.append(y[-1])
          for i in range(len(x) - 3):
                     p1 = [x[i], y[i]]
                     p2 = [x[i + 1], y[i + 1]]
                     p3 = [x[i + 2], y[i + 2]]
                      p4 = [x[i + 3], y[i + 3]]
                      I = angularBisector(p1, p2, p3, p4)
                      BezierCurve([p2, I, p3]).plot_curve()
# 自动处理数据, 传入两个列表, 线条颜色, 标记点颜色, 绘制 Bezier 曲线
def drawBezier(x,y,colorLine,colorPoint):
          x,y = sortXY(x,y)
          global colorLineWhole
           colorLineWhole = colorLine
          pointdBezierGraph(x,y,colorPoint)
# 主函数定义开始
if __name__ == "__main__":
          x = [1.575, 1.553, 1.531, 1.516, 1.501, 1.487, 1.479, 1.472, 1.465, 1.451, 1.443, 1.472, 1.465, 1.451, 1.443, 1.472, 1.465, 1.451, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.443, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.444, 1.
                                                                                                                      1.427,1.413,1.391,1.369]
          for i in range(len(x)):
                      x[i] = 2 * pi / x[i]
          y = [15,25,35,44,58,76,87,99,112,130,138,147,152,156,160]
          drawBezier(x,y,"green","blue")
          plt.xlabel(xLabel[1])
          plt.ylabel(yLabel[0])
           # plt.savefig("图片.png",dpi = 2000)
           plt.show()
```


7 原始数据

) is	ghua U	大 z	ity a	了夏	菜央·数11 2021012539
实验原始数据	120							花丹 34f
(A) 振动攻数 (m)	1-10	11-20	21-30	31 -	40	41-50		7027 0412
	142	133	125	,	17	109		2022.01.1)
	141	133	124	11	6	108		
	140	131	123	"	5	107		
	139	131	123	"	4	106		
推幅 ()	138	130	122	"	3	105		
	15)	129	121	"	3	105		
	131	12]	121	"	Z	104		
	135	127	115		,,	103		
	134	121	11)	/	0	1.5		
	. 7		112		"	102		
10倍周期	14. (22	14.733	14. 42	- 14.	749	14.758		
78 R "2" 78 R "4"	振幅(°) 周期(5) 振幅(*)	116, 108, 1.476 112, 96,	100, 93, 1.476 82, 70,	86 , 78 , 1478 61 , 52	, 73, 6 , 45, 3	8, 64, 1.4 58. 32.	53, 5 80 28. 7	5 51 1.481 23. 20
	周期的	1.#82	1.183	1.82	1.48	2 1.8	183 50 W	1.*82
PA R "2".	振幅()	113. 103.	83. 35,	11. 11	. 05, 0	0, 54,	50.45	
1-1-	周期的	1.877	1.479	1.480	1.#8	1 ,.	481	1.480
(6) 行且化"2"	周期 (5)	1.396	1.412	1.427	1.439	1.451	1.453	1.457
1 de la	雅幅(*)	32	39	47	61	85	90	106
1.460	1.464	1.468	1.472	1.478	1.484	1.490	1.497	1.51
115	129	139	143	140	133	120	105	10
1.528	1.538	1.548	1.563	1.575	1.5/2			
73	63	54	45	40	36			

图 16: 波尔实验原始数据第一张

) id	莱	大	山子		
			A - Internet	9 Tsin	ighua	Univer	sity	龙玉	ŀ
阳	尼之 周期(s)	1.395	1.4+8	1.419	1.432	1.44 3	1.454	1.460	
	和注意(*)	167	164	162	156	150	/ 38	124	
	1.464	1.472	1 479	1.490	1502	1.511	1519	1 5 28	
	1123	92	73	52	39	32	28	24	
	1.549	1.591							
	,7	10							
PB,	尼4 周期	(5) (.3)	12 1.409	1.4.	23	1.433	1.442	1.451	1.460
	振幅	(*) 29	35	43	3	50	\$7	65	>>
	相任	を(*) 15	7 152	14	7	143	138	129	1.7
	1.463	1.471	1.481 1-	490 ,	497	1503	1.510	1.518	1.526
	82	89	87	84	28	72	1	×1	-7
	112	98	84)3	64	56	50	10	\$/
	1.534	1.545	1.560	1.571	1.586			42	*/
	52	115	40	35	30				
	2,4	- 9	24						
(0)		H.F. X	24	20	'/	•			
,	PBRZ 13	AA 157 1.	471 1.0	471	1.471	1.471	1.421	1.471 1	472
	the	幅 ,	8 2	8 4	+ 8	\$6	64	70 7	6
		1		1.					
	1.4/1	1.4/2	1.4/1 1.4		671	1.8/2	1.8/ 1.421	1.6/2 1.6/2	14/2
	80	87	81 9	6 /	00 1	103 11	7 110	113 113	118
	1.471	1.471	1.4/4 1.4)	12 1.4	8	130 1	31 132	18/1 1.8/	1 10/2
	122	124 1	5 10	1.4	in 1	12 ,	12 1.472	1472 14	13
	1.47 +	1.41- 1.4	7 129	132	3 /	39 13	\$ 135	140 140	141
	136	15/ 15							

图 17: 波尔实验原始数据第二张

图 18: 波尔实验原始数据第三张

参考文献

- [1] 新概念基础物理实验讲义 [M]. 清华大学出版社, 朱鹤年编著, 2013
- [2] 弹簧手册 [M]. 机械工业出版社, 张英会, 2008

