偏振光学实验报告

鲁睿 未央软-11 2021012539 2022.10.31

摘要: 光被证实是电磁波是物理学史上的伟大发现,其偏振现象是反映光横波特性的有力证据。通过实验探究光的偏振特性,利用布儒斯特角测定玻璃片折射率,并调整单色光起偏和检偏角度。在偏振装置调整之后,验证,振光的马吕斯定律,并观测偏振光分别通过半波片和1/4波片后的偏振特性,验证椭圆偏振光特性。

关键词:偏振片;检偏;马吕斯定律;波片

目录

1 实验仪器

- 2 实验原理
 - 2.1 布儒斯特角
 - 2.2 马吕斯定律
 - 2.3 波片几何关系

3 实验内容

- 3.1 自准直法垂直入射
- 3.2 观测布儒斯特角
- 3.3 透射光强和偏振器夹角关系
- 3.4 线偏振光入射波片

3.4.1
$$\frac{1}{2}$$
 波片或全波片
3.4.2 $\frac{1}{4}$ 波片

- 4 实验总结
 - 4.1 误差分析
 - 4.1.1 马吕斯定律
 - 4.1.2 波带片
 - 4.2 光强不稳定现象
- 5 原始数据

1 实验仪器

半导体激光器、偏振片×2(起偏器 P 和检偏器 A)、玻璃片、 $\frac{1}{4}$ 波带片×2(其中 C_0 大致标明快轴方向, C_x 则未标记)、光强测定仪(含硅光电池、数字电压表、电阻箱)、

2 实验原理

2.1 布儒斯特角

光入射介质表面时,菲涅尔公式给出反射电场和入射电场的复振幅关系

$$\begin{cases} \tilde{r}_p = \frac{E'_p}{E_p} = \frac{\tan(\theta_i - \theta_t)}{\tan(\theta_i + \theta_t)} \\ \tilde{r}_s = \frac{E'_s}{E_s} = \frac{\sin(\theta_i - \theta_t)}{\sin(\theta_i + \theta_t)} \end{cases}$$
(1)

该式可得当 $\theta_i + \theta_t = \frac{\pi}{2}$ 时 $\tilde{r}_p = 0$,此时反射光为线偏振光,对应角度

$$\theta_B = \arctan\left(\frac{n_2}{n_1}\right)$$
(2)

2.2 马吕斯定律

设沿透射轴方向振动与沿消光轴方向振动的光强透射率之比为e,则振动方向和透射轴方向为 θ 角的线偏振光透射率为

$$T_{\theta} = (T_1 - T_2)\cos^2\theta + T_2 \tag{3}$$

2.3 波片几何关系

实际上 $\frac{1}{4}$ 波片的相位差不是严格的 $\frac{\pi}{2}$,令椭圆偏振光振动分量表达式

$$\begin{cases} x = E_{0x} \cos(\omega t) \\ y = E_{0y} \cos(\omega t + \delta) \end{cases}$$
(4)

可以使用转置矩阵推导椭圆偏振光的长轴方向

$$\tan 2\Psi = \frac{2E_{0x}E_{0y}\cos\delta}{E_{0x}^2 - E_{0y}^2} \tag{5}$$

定义
$$\beta = \arctan\left(\frac{E_{0y}}{E_{0x}}\right)$$
,代入 $\frac{I_{\min}}{I_{\max}} = \frac{b^2}{a^2}$ 可以将长轴方向以及相位差表示为

$$\begin{cases} \Psi = \frac{1}{2} \arctan(\tan(2\beta) \cdot \cos \delta) \\ |\sin \delta_r| = \frac{2\sqrt{\frac{I_{\min}}{I_{\max}}}}{\sin(2\beta) \left(1 + \frac{I_{\min}}{I_{\max}}\right)} \end{cases}$$
(6)

3 实验内容

3.1 自准直法垂直入射

开启激光电源,放上玻璃片,使用一张戳了孔的纸盖住光源,调整底盘角度使得反射光 和光源中心重合,该**自准直法**法和分光计调节类似,体现光学实验的相通性。

3.2 观测布儒斯特角

- 1. 在垂直入射的基础上,转动平台 55° 左右,用纸面做接收屏,调节起偏器和小平台 角度使得纸面上亮点的光强极小;
- 2. 调节起偏器角度,使得激光完全消光;
- 3. 记录下平台读数 α_B 和起偏器 P 方位角 p_{\leftrightarrow} ,此时起偏器透射轴位于水平方向,重复上述过程 3 次。

α_0	74°32'	74°32'	74°32'
$lpha_{Bi}$	18°47'	20°12'	19°38'
$lpha_0-lpha_{Bi}$	$55^{\circ}45'$	54°20'	54°54'
P_{\leftrightarrow}	$269.6\degree$	$270.8\degree$	271.2°

表1布儒斯特角和起偏角度测量表格

计算布儒斯特角以及起偏角度平均值如下

$$\overline{ heta_B} = rac{55^\circ 45' + 54^\circ 20' + 54^\circ 54'}{3} = 54^\circ 59'
onumber \ \overline{P_\uparrow} = rac{269.6^\circ + 270.8^\circ + 271.2^\circ}{3} = 270.5^\circ$$

从而计算折射率为

$$n= an heta_B= an 54\degree 59'=1.427$$

取 $P_{\leftrightarrow} = \overline{P_{\leftrightarrow}}$ 时,改变角度测量光强,测得检偏器消光时角度 $\alpha_{\uparrow} = 2.9^{\circ}$ 。

取定 **R** = 100**Ω**, **I**₀ = -0.007mV, $\bar{\mathbf{P}}_{\leftrightarrow}$ = 270.5°, α_{\uparrow} = 2.9°, 将 P 盘置于平均值位置,移去玻璃片,转动检偏器 A 与之消光,记录下 A 盘读数 α_1 。改变检偏器方位角,在两偏振片透射轴夹角 θ 为下列定值时测量透射光强。

θ(度)	0.0	15.0	30.0	45.0	60.0	75.0	80.0	84.0	87.0	90.0
$=a_{\uparrow}+90+ heta$	92.9	107.9	122.9	137.9	152.9	167.9	172.9	176.9	179.9	182.9
$I_m/{ m mV}$	2.661	2.545	2.096	1.44	0.769	0.243	0.109	0.077	0.025	0.008
$I = I_m - I_0$	2.653	2.537	2.088	1.432	0.761	0.235	0.101	0.069	0.017	0.000
$\cos^2 heta$	1.0000	0.9330	0.7500	0.5000	0.2500	0.0670	0.0302	0.0109	0.0027	0.0000
$I/I_{ m max}$	1.0000	0.9563	0.7870	0.5398	0.2868	0.0886	0.0381	0.0260	0.0064	0.0000
	$egin{aligned} & heta(oldsymbol{g}) \ &= a_{\uparrow} + 90 + heta \ &I_m/\mathrm{mV} \ &I = I_m - I_0 \ &\mathrm{cos}^2 heta \ &I/I_\mathrm{max} \end{aligned}$	θ (度) 0.0 $= a_{\uparrow} + 90 + \theta$ 92.9 I_m/mV 2.661 $I = I_m - I_0$ 2.653 $\cos^2 \theta$ 1.0000 I/I_{max} 1.0000	θ (度)0.015.0 $= a_{\uparrow} + 90 + \theta$ 92.9107.9 I_m/mV 2.6612.545 $I = I_m - I_0$ 2.6532.537 $\cos^2 \theta$ 1.00000.9330 I/I_{max} 1.00000.9563	θ (度)0.015.030.0 $= a_{\uparrow} + 90 + \theta$ 92.9107.9122.9 I_m/mV 2.6612.5452.096 $I = I_m - I_0$ 2.6532.5372.088 $\cos^2 \theta$ 1.00000.93300.7500 I/I_{max} 1.00000.95630.7870	θ (度)0.015.030.045.0 $= a_{\uparrow} + 90 + \theta$ 92.9107.9122.9137.9 I_m/mV 2.6612.5452.0961.44 $I = I_m - I_0$ 2.6532.5372.0881.432 $\cos^2 \theta$ 1.00000.93300.75000.5000 I/I_{max} 1.00000.95630.78700.5398	θ (度)0.015.030.045.060.0 $= a_{\uparrow} + 90 + \theta$ 92.9107.9122.9137.9152.9 I_m/mV 2.6612.5452.0961.440.769 $I = I_m - I_0$ 2.6532.5372.0881.4320.761 $\cos^2 \theta$ 1.00000.93300.75000.50000.2500 I/I_{max} 1.00000.95630.78700.53980.2868	θ (度)0.015.030.045.060.075.0 $= a_{\uparrow} + 90 + \theta$ 92.9107.9122.9137.9152.9167.9 I_m/mV 2.6612.5452.0961.440.7690.243 $I = I_m - I_0$ 2.6532.5372.0881.4320.7610.235 $\cos^2 \theta$ 1.00000.93300.75000.50000.25000.0670 I/I_{max} 1.00000.95630.78700.53980.28680.0886	θ (度)0.015.030.045.060.075.080.0 $= a_{\uparrow} + 90 + \theta$ 92.9107.9122.9137.9152.9167.9172.9 I_m/mV 2.6612.5452.0961.440.7690.2430.109 $I = I_m - I_0$ 2.6532.5372.0881.4320.7610.2350.101 $\cos^2 \theta$ 1.00000.93300.75000.50000.25000.06700.0302 I/I_{max} 1.00000.95630.78700.53980.28680.08860.0381	θ (度)0.015.030.045.060.075.080.084.0 $= a_{\uparrow} + 90 + \theta$ 92.9107.9122.9137.9152.9167.9172.9176.9 I_m/mV 2.6612.5452.0961.440.7690.2430.1090.077 $I = I_m - I_0$ 2.6532.5372.0881.4320.7610.2350.1010.069 $\cos^2 \theta$ 1.00000.93300.75000.50000.25000.06700.03020.0109 I/I_{max} 1.00000.95630.78700.53980.28680.08860.03810.0260	θ (度)0.015.030.045.060.075.080.084.087.0 $= a_{\uparrow} + 90 + \theta$ 92.9107.9122.9137.9152.9167.9172.9176.9179.9 I_m/mV 2.6612.5452.0961.440.7690.2430.1090.0770.025 $I = I_m - I_0$ 2.6532.5372.0881.4320.7610.2350.1010.0690.017 $\cos^2 \theta$ 1.00000.93300.75000.50000.25000.06700.03020.01090.0027 I/I_{max} 1.00000.95630.78700.53980.28680.08860.03810.02600.0064

表2透射光强和夹角关系表格

绘制
$$Y_1 = rac{I - I_{\min}}{I_{\max} - I_{\min}}, Y_2 = \cos^2 heta$$
 关于 $heta$ 的曲线如下

图1 光强归一化和偏振夹角θ关系(实际曲线和理论曲线)

绘制 $\frac{I}{I_{\text{max}}}$ 关于 $\cos^2 \theta$ 的拟合直线,由于当 $\theta \to 90^\circ$ 时,偏振光非理想以及激光为部分偏振光,从而此时 $I\left(\frac{\pi}{2}\right) \neq 0$,故选择**不强制经过原点**的线性拟合模型 Y = aX + b

图2光强归一化和角度余弦平方的关系(实际曲线和理论曲线)

- 3.4 线偏振光入射波片
- 3.4.1 $\frac{1}{2}$ 波片或全波片
 - 1. 在起偏器后装上波片 C_0 ,调节方位使得消光,此时快轴位于竖直方向,其快轴方位角 $C_0 = 308.7^{\circ}$;
 - 2. 将待测波片 C_x 放在平台上,使用自准直法调节入射光线与 C_x 垂直,再调节其取向使得检偏器消光,读数 $C_x = 198°$;
 - 3. 调整起偏器的角度为特定值,测量消光时 A 的读数 α_i ;
 - 4. 将 C₀ +90°, 再次消光后以相同方式记录读数。

		快轴方向水平			快轴方向竖直	
$eta=p-ar{p}_{\leftrightarrow}/^{\circ}$	15.0	30.0	45.0	15.0	30.0	45.0
$\mathrm{p/^{\circ}}$	285.5	300.5	314.5	255.5	240.5	225.5
$a_i/^\circ$	348.8	332.9	318.8	17.8	33.7	48.6
$lpha = a_i - a_{\uparrow}/^{\circ}$	-14.1	-30.0	-44.1	14.9	30.8	45.7

表3 偏振光通过全波片或半波片实验数据

由于 P 和 A 的度盘朝向不同,两者逆时针转动时读数大小变化相反,即全波片时两者的 角度相反,半波片时两者角度相反。

故判定当快轴方向水平时等效为全波片,竖直时等效为半波片。

3.4.2 $\frac{1}{4}$ 波片

观测线偏振光经过 C_0 后偏振态的改变,置波片 C_0 的快轴于竖直方向,调整起偏器角度,使 β 为给定角度,分别测出透射光的长轴方位角 Ψ 相关的数据、光强最大最小值 I_{max} 和 I_{min} 。

$eta=p-ar{p}_{\leftrightarrow}/^{\circ}$	22.5	45.0	67.5
$p/^{\circ}$	293.0	315.5	337.5
检偏器最大光强位置 $a_i/^\circ$	92.3	48.3	97.2
$I_{ m max}/{ m mV}$	1.501	0.870	1.001
$I_{ m min}/ m mV$	0.257	0.816	0.172
$lpha=a_i-a_\uparrow/^\circ$	89.4	45.4	94.3
长轴方位角 $\Psi_1/^\circ$	-0.6	45.4	-4.3
$I_0/{ m mV}$	-0.007	-0.007	-0.007
$\left(I_{\mathrm{min}}-I_{0} ight)/\left(I_{\mathrm{max}}-I_{0} ight)$	0.1712	0.9384	0.1776
$\sin \delta_r$	0.9993	0.9995	1.0005
$\delta_r/^\circ$	87.8	88.2	N/A
$\Psi_2/^\circ$	1.1	45.0	N/A

表4线偏振光经过1/4波片实验数据

例如其中 $\beta = 45^{\circ}$ 涉及**取极限操作**,代入公式(6)计算过程如下

$$\sin \delta_r = \frac{2\sqrt{\frac{I_{\min}}{I_{\max}}}}{\sin(2\beta)\left(1 + \frac{I_{\min}}{I_{\max}}\right)} = \frac{2\sqrt{0.9384}}{\sin(2 \cdot 45^\circ)(1 + 0.9384)} = \frac{1.9374}{1.9384} \approx 0.99949$$
$$\delta_r \approx \arcsin(0.99949) = 88.18^\circ$$

$$\Psi_2 = rac{1}{2} \mathrm{arctan}(\mathrm{tan}(2eta) \cdot \cos \delta) = \lim_{eta
ightarrow 45^\circ} rac{1}{2} \mathrm{arctan} \Big(\mathrm{tan}\, 2eta \cdot \sqrt{1-0.99949^2} \Big) = 45.0^\circ$$

其余情况计算类似,可以发现通过测量得到的长轴方位角 Ψ_1 与通过光强以及相位差理论 计算得到的 Ψ_2 结果相近,相差约几度。

4 实验总结

4.1 误差分析

4.1.1 马吕斯定律

在验证马吕斯定律实验中,理论数据普遍高于理论数据,主要原因是偏振片**消光轴不是 理想的**,该方向存在一定透射率,使得透射光强偏高,同时激光存在一定的自然光部分,该 部分在垂直方向也不能完全消去,两种情况叠加导致**图1**中 *I*_{max} 和 *I*_{min} 之差大于理论最大光 强,从而计算得到的实际比例小于理论比例。

考虑消光轴透射率为 e,由线性拟合模型可知, $e \approx 1.5\% \ll 1$,说明该偏振片质量欠佳 (一般要求 $e \sim 10^{-4}$),观察其表面有一定程度的磨损,其内部电子排布可能发生变化导致 马吕斯定律验证出现一定偏差。

4.1.2 波带片

测量过程中发现转动检偏器时,其整体框架由于**老化**发生松动,导致角度测量不准确,这也反应在 $\frac{1}{4}$ 波带片中 sin δ 大于 1 的测量结果中。

在 1 波带片中由于多次测量数据对比角度正负号,可以对半波片和全波片进行判定。

4.2 光强不稳定现象

在测量过程中发现**最大光强测定不稳定**,例如,当测定最大光强和最小光强之后,再次 测定最大光强,示数有相应的变化。

有文献表明¹, **He-Ne 激光器每个纵模的偏振方向会随着时间缓慢变化**,并大致成三角函数周期性变化趋势,从而其输出光强不稳定,导致测量光强不稳定,这也间接导致了 sinδ>1的结果。

可以尝试**快速测量**最大和最小光强,或者等待一定时间对光强**求平均**来避免这一系统误差。

5 原始数据

旅丹 ZOZZ·10.31

2022	秋基物	2
------	-----	---

	i.	しえ						2022	秋墨	物 2
偏振	姓名:	a A	学号:	202101253	班号:	末央-93	座位号:	12 日	期: 2022	.1031
提示: a:检偏器A(盘	盘)的方位角;	p: 起偏器	P(盘)的方(立角。]			
4观测布儒斯特	寺角、起	偏器P的:	透射轴在	水平方	句的方位	角				
光束正入射棱镜表	面时平台方	位角角 α_{i} =	0= <u>74°3</u> 2	_ ; 入射角	为布氏角时	平台方位方	f]α _{B1} =_/2"	$\frac{47'}{(\alpha_B-\alpha_i)}$	=0= 51°45	<u>ن</u> .
$P_{\leftrightarrow 1} = \underline{z \epsilon \beta \cdot 6}; c$	$x_{B2} = 2^{\circ} 12$	<u>.'</u> ,	P _{↔2} =	270.3";	$\alpha_{B3}=$	18:38;	P _{↔3} =	271.2	·	
平均值α _B =	19°32' ;	布氏角的测	且值 $\theta_{\rm B}$ =	54 . 59	折射率n	= 1.427	o			
5偏振器透射轴	由方向		表4的3次	平均值						
起偏器P的透射轴在水	、平方向的方位	立角P↔(度)	27	0.5	检偏器AF	印P正交时	寸,A的方位	立角a↑	2.9	
6透射光强Im ^上	可两偏振	器夹角0	的关系	R= Ω:	p=p(平)	匀值)= 2	1.5 at=	2.9		
夹角 θ (度)	0.0	15.0	30.0	45.0	60.0	75.0	80.0	84.0	87.0	90.0
a = a ₁ +90+ 0 (度)	92.9	107.9	122.9	137.9	152.9	107.8	172.9	176.9	178.9	182.9
Im(mV) 测量值	2.661	z.545	z.096	1.440	0769	0.233	0.10]	0:07]	0.025	0.008
7定波片C₀的快轴	由的方向(唐	E)	$R = 100.0 \Omega$; p=p↔(平均值)=	=27 <u>0~5</u> °	; a=a↑=_	2.9°		
	波片Co快	轴在竖直之	方向时,度	盘示值Ca	=_308.7°					
8定波片C,的轴的	方向(度)		$R = 1000 \Omega$; p=p↔	(平均值)=	= 270.5°	; a=a _↑ =_	2.90		
	波片Cx的1	个轴在竖直	五 方向时,	度盘示值C	x= <u>188°</u> .					
9&10线偏振光	通过1/2	波片或全	波片						L	2.07'
9)Cx某轴在竖直方	向,度盘元	<值Cx=_//	<u>8°。C₀快</u>	轴在竖直7	方向。 1	10)Cx方位	不变,C₀快	轴在水平7	方向,Co=_ 】	30-11
β =p	¬p. (度)	15.0	30.0	45.0		15.0	30.0	45.0		
	р	285.5	300.5	314.5		255.5	240.5	Z25.5		
消光时A盘度盘i	卖数a _i (度)	348.8	332.9	318.8		17.8	33/	486		
α=a	_i -a↑(度)	- 14.]	-30.0	-44.]		14.9	30.8	45.		
建议: 每个β角测	量前: A盘:	方位角初始	i化到a↑。	70				1		
11线偏振光经	过1/4波	片	$C_0 = 3.8$	6	R = 1000	Ω	建议: 每	个β测量前	: A盘方位	
β =p	,p. (度)	22.5	45.0	67.5	-		角初始化	到at。	0 0001	ोन
	p(度)	293.0	315.5	33/.5			ψ: 转	<u>快到[-90</u>	1,90]区	111
A盘透射轴在长轴方向	句时的a _i (度)	92.3°	48·3°	97.2°			10:反应	育京兀、 島吉、寄 ^々	上电势和	
I _{max} (mV)(最	最大光强)	1.501	0.870	1.001			电表零点	点漂移等的	内综合影	
Imin (mV) (揖	最小光强)	0.257	0.816	0.1/2			响。	1		
α=a	_i -a↑(度)	89.4°	45.4°	943	I ₀ (挡住	光源时)=	= - 0.00/ml	/		
利用α计算长轴方	位角 ¢(度)	- 0-6°	45.4	- 4.3						
h2/22	al. /I.	0.1712	0.9379	0.1718						
D/a	eins	0.9193	0.9195	1.0005						
利用(13)式计算 δ	SINOr (庄)	87.8°	88.2°	尼始						
	0 _r ()支)	1,0	45.0°	0°						
利用(2)式	计算ψ(度)	1.1								

图3 原始数据截图

[1]魏茂金. 硅光电池实验输出光强不稳定现象的研究[J]. 三明学院学报,2007,(04):383-385.